一、前言

已知 $\tan \frac{x}{2}$ $=$ $t$, 则:

$$\sin x = ?$$

$$\cos x = ?$$

$$\tan x = ?$$

二、正文

分析可知,由于已知的是 $\frac{x}{2}$ 的 $\tan$ 值,要求解的确实 $x$ 的 $\sin$, $\cos$ 和 $\tan$ 值,所以,一定会用到三角函数的二倍角公式,即:

$$\begin{aligned}\sin 2 \alpha & = 2 \sin \alpha \cos \alpha \\\cos 2 \alpha & = 2 \cos^{2} \alpha – 1 \\\tan 2 \alpha & = \frac{2 \tan \alpha}{1 – \tan^{2} \alpha}\end{aligned}$$

于是可知,想要求解出 $\sin$ 就需要先求解出 $\cos$, 至于 $\tan$ 由于和 $\sin$ 与 $\cos$ 都没有关系,所以可以在任意步骤完成求解。

$\cos x$

首先:

$$\begin{aligned}\tan \frac{x}{2} & = t \\ \\& \Rightarrow \frac{\sin \frac{x}{2}}{\cos \frac{x}{2}} = t \\ \\& \Rightarrow \textcolor{orangered}{\frac{\sqrt{1 – \cos^{2} \frac{x}{2}}}{\cos \frac{x}{2}} = t}\end{aligned}$$

接下来,为了简化书写,可以令 $\cos \frac{x}{2}$ $=$ $\frac{x}{2}$, 于是:

$$\begin{aligned}\textcolor{orangered}{\frac{\sqrt{1 – \cos^{2} \frac{x}{2}}}{\cos \frac{x}{2}} = t} \\ \\& \Rightarrow \frac{\sqrt{1 – (\frac{x}{2})^{2}}}{\frac{x}{2}} = t \\ \\& \Rightarrow \frac{1 – (\frac{x}{2})^{2}}{(\frac{x}{2})^{2}} = t^{2} \\ \\& \Rightarrow 1 – (\frac{x}{2})^{2} = t^{2} (\frac{x}{2})^{2} \\ \\& \Rightarrow (t^{2} + 1) \cdot (\frac{x}{2})^{2} = 1 \\ \\& \Rightarrow (\frac{x}{2})^{2} = \frac{1}{1 + t^{2}} \\ \\& \Rightarrow \textcolor{yellow}{ \frac{x}{2} = \frac{1}{\sqrt{1+t^{2}}} }\end{aligned}$$

根据前面的代换 “$\cos \frac{x}{2}$ $=$ $\frac{x}{2}$” 可知:

$$\textcolor{yellow}{\cos \frac{x}{2} = \frac{1}{\sqrt{1+t^{2}}}}$$

于是:

$$\begin{aligned}\cos x & = 2 \textcolor{yellow}{\cos^{2} \frac{x}{2} } – 1 \\ \\& = 2 \cdot (\frac{1}{\sqrt{1+t^{2}}})^{2} – 1 \\ \\& = \frac{2}{1 + t^{2}} – 1 \\ \\& = \textcolor{springgreen}{ \frac{1 – t^{2}}{1 + t^{2}} }\end{aligned}$$

即:

$$\textcolor{green}{\boldsymbol{\cos x = \frac{1 – t^{2}}{1 + t^{2}}}}$$

$\sin x$

首先:

$$\begin{aligned}\tan \frac{x}{2} = t \\ \\& \Rightarrow \frac{\sin \frac{x}{2}}{\cos \frac{x}{2}} = t \\ \\& \Rightarrow \textcolor{orangered}{ \frac{\sin \frac{x}{2}}{\sqrt{1 – \sin^{2} \frac{x}{2}}} = t }\end{aligned}$$

接下来,为了简化书写,可以令 $\sin \frac{x}{2}$ $=$ $\frac{x}{2}$, 于是:

$$\begin{aligned}\textcolor{orangered}{ \frac{\sin \frac{x}{2}}{\sqrt{1 – \sin^{2} \frac{x}{2}}} = t } \\ \\& \Rightarrow \frac{\frac{x}{2}}{\sqrt{1 – (\frac{x}{2})^{2}}} = t \\ \\& \Rightarrow \frac{(\frac{x}{2})^{2}}{1 – (\frac{x}{2})^{2}} = t^{2} \\ \\& \Rightarrow (\frac{x}{2})^{2} = t^{2} – t^{2} (\frac{x}{2})^{2} \\ \\& \Rightarrow (1 + t^{2}) \cdot (\frac{x}{2})^{2} = t^{2} \\ \\& \Rightarrow \textcolor{yellow}{ \frac{x}{2} = \frac{t}{\sqrt{1 + t^{2}}} }\end{aligned}$$

根据前面的代换 “$\sin \frac{x}{2}$ $=$ $\frac{x}{2}$” 可知:

$$\textcolor{yellow}{ \sin \frac{x}{2} = \frac{t}{\sqrt{1 + t^{2}}} }$$

于是:

$$\begin{aligned}\sin x & = 2 \textcolor{yellow}{ \sin \frac{x}{2} } \cdot \textcolor{yellow}{ \cos \frac{x}{2} } \\ \\& = 2 \cdot \frac{t}{\sqrt{1 + t^{2}}} \cdot \frac{1}{\sqrt{1+t^{2}}} \\ \\& = \textcolor{springgreen}{ \frac{2t}{1 + t^{2}} }\end{aligned}$$

即:

$$\textcolor{green}{\boldsymbol{\sin x = \frac{2t}{1 + t^{2}}}}$$

$\tan x$

$$\begin{aligned}\tan x & = \frac{2 \tan \frac{x}{2}}{1 – \tan ^{2} \frac{x}{2}} \\ \\& = \frac{2t}{1 – t^{2}}\end{aligned}$$

即:

$$\textcolor{green}{\boldsymbol{\tan x = \frac{2t}{1 – t^{2}}}}$$

结论

综上可知:

$$\textcolor{green}{\begin{aligned}\boldsymbol{ \sin x } & = \boldsymbol{\frac{2t}{1 + t^{2}} } \\ \\\boldsymbol{ \cos x } & = \boldsymbol{ \frac{1 – t^{2}}{1 + t^{2}} } \\ \\\boldsymbol{ \tan x } & = \boldsymbol{ \frac{2t}{1 – t^{2}} }\end{aligned}}$$

考研数学思维导图

高等数学

涵盖高等数学基础概念、解题技巧等内容,图文并茂,计算过程清晰严谨。

线性代数

以独特的视角解析线性代数,让繁复的知识变得直观明了。

特别专题

通过专题的形式对数学知识结构做必要的补充,使所学知识更加连贯坚实。

让考场上没有难做的数学题!